
Evolution of programming
languages

Machine language/Code

• The first generation of codes used to program a computer, was called
machine language or machine code, it is the only language a
computer really understands, a sequence of 0s and 1s that the
computer's controls interprets as instructions, electrically

Symbolic

• Was developed by Grace Hopper, a mathematician and a US navy admiral.

• Developed the concept of a special computer program that would convert
programs into machine language.

• Because computer do not understand symbolic language ,it must be
translated to machine language

• A special program called assembler translates symbolic code into machine
language

• Because symbolic languages had to be assembled into machine language,
they soon became known as assembly language, this name is still used
today for symbolic languages that closely represent the machine language
of the compiler.

Assembly Code.

• The second generation of code was called assembly language,
assembly language turns the sequences of 0s and 1s into human
words like 'add'.

• Assembly language is always translated back into machine code by
programs called assemblers

High level language.(HLL)

• Although assembly language greatly improved program efficiency,
they still required programmers to concentrate on the hardware that
they were using

• It was tedious working on symbolic languages because each machine
instruction had to be individually coded

• The desire to improve programmer efficiency and to change the focus
from the computer to the problem being solved led to the
development of high level language.

• HLL are portable to many computers allowing the programmer to
concentrate on application problem at hand rather than the
intricacies of the computer.

• They are designed to relieve the programmer from the details of
assembly language.

• They share one thing in common with assembly language/symbolic
languages, they must be converted to machine language.

Natural Languages

• Ideally we could use our natural languages (such as English, French or
Chinese) and the computer would understand it and execute our
requests immediately.

• Though this sounds science fiction considerable work on natural
language is being in labs today

History of C

The milestones in C's development as a language are listed below:

• UNIX developed c. 1969 - DEC PDP-7 Assembly Language

• BCPL - a user friendly OS providing powerful development tools
developed from BCPL. Assembler tedious long and error prone.

• A new language ``B'' a second attempt. c. 1970.

• A totally new language ``C'' a successor to ``B''. c. 1971

• By 1973 UNIX OS almost totally written in ``C''.

Low level vs high level
languages

Lecture Overview
• Definition Low & High Level Language

• Contrast Low & High Level Language

Definition
• Low level languages:

• Computer language consisting of mnemonics that
directly correspond to machine language
instructions

• High Level Languages:
• Basically symbolic languages that use English words

and/or mathematical symbols rather than
mnemonic codes.

Contrast
• Low Level Languages

• Very close to machine language

• Concentrate on machine architecture

• Doesn’t require translation

• High Level Languages
• Machine-independent programming

language

• Concentrate on the logic of problem

• Requires translation

Examples
• Low Level Language

• Machine language

• Assembly language

• High Level Language
• C

• C++

• BASIC

• Java

LOW vs. HIGH Level Languages
• Differences in terms of:

i. Understandability

ii. Ease of writing

iii. Running speed

iv. Writing format

Understandable
• Low Level Language:

• Mnemonic, binary, hexadecimal

• High Level Language:
• Simple English and mathematics symbols

Adds two numbers and stores the result

• Low Level Language:
.model small, C
.586

.data

mov eax,5
mov ebx,10

add eax,ebx

end

Adds two numbers and stores the result

• High Level Language:
int main()

{

//assign to the variable result the value of 5 + 10

int result = 5 + 10;

return 0;

)

Ease of Writing
• Low Level Language:

• Designed for the ease of the computer running the
language.

• Difficult for human to read and write

• High Level Language:
• Designed for the ease of the person writing the

language.

• Using language that human can understand, English

Running Speed
• Low Level Language:

• Faster

• No need to compile

• High Level Language:
• Need compiler or interpreter

• Translate into machine code

Summary

• Low level languages:
• Computer language consisting of mnemonics that

directly correspond to machine language instructions

• High Level Languages:
• Basically symbolic languages that use English words

and/or mathematical symbols rather than mnemonic
codes.

• Differences in terms of:
i. Understandability
ii. Ease of writing
iii. Running speed
iv. Writing format

