
Functions in C

Introduction

 A programmer can solve a simple problem in C with a
single function. More difficult problems can be
decomposed into sub problems, each of which can be
either coded directly or further decomposed.

 Decomposing difficult problems until they are directly
codable as single C functions is the software engineering
method of stepwise refinement. The function construct in
C is used to write code for these directly solvable
subproblems. These functions are combined into other
functions and are ultimately used in main() to solve the
original problem.

Introduction...

 The function mechanism is provided in C to perform
distinct programming tasks. Some functions, such as
strcpy() and rand(), are provided by libraries; others
can be written by the programmer.

 A C program is made up of one or more functions,
one of which is main(). Program execution always
begins with main(). When program control
encounters a function name, the function is called,
or invoked. This means that program control passes
to the function

Need for user-defined functions

• Large programs are divided in functional parts, and each of the
functional part is coded separately and independently but later
combined into a single unit.

• The independently coded programs are called sub-programs, and in C
they are referred to as “functions”. The functions can be called and
used whenever needed.

Advantages of using functions

• It facilitates top-down modular programming. The high level logic of
the overall problem is solved first while the details of each lower-level
functions are addressed later.

• The length of a source program can be reduced by using functions at
appropriate places. This factor is particularly critical with
microcomputers where memory space is limited.

Advantages of using functions

• It is easy to locate and isolate a faulty function for further
investigations.

• A function may be used by many other programs. This means that a C
programmer can build on whatever others have already done, instead
of starting all over again from scratch.

Components of a function

 The function name. This is simply a unique identifier.

 The function parameters (also called its signature). This is
a set of zero or more typed identifiers used for passing
values to and from the function.

 The function return type. This specifies the type of value
the function returns. A function which returns nothing
should have the return type void.

 The body of a function contains the computational steps
(statements) that comprise the function

Function definition

 The C code that describes what a function does is called
the function definition.

 Syntax:
Return type function name (arguments)function header

{

statements

}

 Everything before the first brace makes up the header of
the function definition, and everything between the
braces makes up the body of the function definition.

Parameters in functions

 In C, the empty parameter list is always equivalent to
using void. Thus, main() is equivalent to main(void).
The function main() implicitly returns the integer
value 0 if no explicit return expression statement is
executed.

The return statement

 The return statement is a flow of control statement. When a
return statement is executed, the current function
terminates, and program control is immediately passed back
to the place where the function was invoked.

 Syntax:

return;

return expression;

 Example:

return;

return (a + b);

Example of a function

 A function that compares two values and returns the
largest of the two.

Calling functions

 Functions are invoked by writing their name and an
appropriate list of arguments within parentheses. These
arguments match in number and type (or compatible
type) the parameters in the parameter list in the function
definition.

 The compiler enforces type compatibility. The basic
argument-passing mechanism inherited from the C
language is call-by-value. That is, each argument is
evaluated and its value is used locally in place of the
corresponding formal parameter. Thus, if a variable is
passed to a function, the stored value of that variable in
the calling environment will not be changed.

Function invocation with call-by-value
means:

 Each expression in the argument list is evaluated.

 The value of the expression is converted, if
necessary, to the type of the formal parameter, and
that value is assigned to its corresponding formal
parameter at the beginning of the body of the
function. This means a local copy is made.

 The body of the function is executed using the local
copy of the parameter.

Function invocation with call-by-value
means:
 If a return statement is executed, then control is

passed back to the calling environment.

 If the return statement includes an expression,

then the value of the expression is converted, if

necessary, to the type given by the type

specifier of the function, and that value is

passed back to the calling environment, too.

 If the return statement does not include an

expression, then no useful value is returned to

the calling environment.

Function invocation with call-by-value
means:

 If no return statement is present, then control is
passed back to the calling environment when the
end of the body of the function is reached. No useful
value is returned.

 All arguments are passed call-by-value. A change in
the value of the local copy does not affect the
passed in arguments value.

Default arguments

 A formal parameter can be given a default argument,
usually a constant that occurs frequently when the
function is called. Use of a default argument saves
writing this default value at each invocation.

Example:
int compute_age(int year, month mth, int birth_year = 1989,

month birth_month = january);

Functions as arguments

 Functions in C can be thought of as the addresses of
the compiled code residing in memory. Functions are
therefore a form of pointer and can be passed as a
pointer-value argument into another function.

Scope

 The core language has two principal forms of scope:
local scope and file scope. Local scope is scoped to a
block. Compound statements that include
declarations are blocks.

 Function bodies are examples of blocks. They
contain a set of declarations that include their
parameters. File scope has names that are external
(global).

Scope

 Every variable and function in C has two attributes:
type and storage class. The four storage classes are
automatic, external, register, and static, with
corresponding keywords

