
Flow control statements

 The order in which statements are executed is called
flow control (or control flow).

 Flow control is an important consideration because it
determines what is executed during a run and what
is not, therefore affecting the overall outcome of the
program.

Loops

 Loops cause a section of your program to be
repeated a certain number of times. The repetition
continues while a condition is true. When the
condition becomes false, the loop ends and control
passes to the statements following the loop.

 There are three kinds of loops in C:
 The for loop,

 The while loop

 The do loop.

The For loop

 The for loop executes a section of code a fixed number of
times. It’s usually (although not always) used when you
know, before entering the loop, how many times you want
to execute the code.

 Syntax:
for(int x=c;x<d;x++)

 Example:
for(int j=0;j<15;j++)

 Write a program to calculate the squares of the numbers 0
- 15

The for loop..

The for loop..

 The initialization expression is executed only once,
when the loop first starts. It gives the loop variable
an initial value.

 The test expression usually involves a relational
operator. It is evaluated each time through the loop,
just before the body of the loop is executed. It
determines whether the loop will be executed again.
If the test expression is true, the loop is executed
one more time. If it’s false, the loop ends, and
control passes to the statements following the loop.

The for loop..

 The increment expression changes the value of the
loop variable, often by incrementing it. It is always
executed at the end of the loop, after the loop body
has been executed. Here the increment operator ++
adds 1 to j each time through the loop.

 The program in the example loops exactly 15 times,
I.e from j=0 to j = 14. when j=15 the loop exits

The while loop

 The for loop does something a fixed number of
times. What happens if you don’t know how many
times you want to do something before you start the
loop? In this case a different kind of loop may be
used: the while loop

 Syntax:
while(condition)

{
Statement

}

The while loop

The do while loop

 In a while loop, the test expression is evaluated at
the beginning of the loop. If the test expression is
false when the loop is entered, the loop body won’t
be executed at all. In some situations this is what
you want. But sometimes you want to guarantee
that the loop body is executed at least once, no
matter what the initial state of the test expression.
When this is the case you should use the do loop,
which places the test expression at the end of the
loop.

The do while loop..

Nested loops

Refers to a loop inside a loop.

Example: Output even numbers within a range I.e. y to
x

When to use which loop

 The for loop is appropriate when you know in
advance how many times the loop will be executed.

 The while and do loops are used when you don’t
know in advance when the loop will terminate (the
while loop when you may not want to execute the
loop body even once, and the do loop when you’re
sure you want to execute the loop body at least
once).

Decisions

 The decisions in a loop always relate to the same
question: Should we do this (the loop body) again?

 In a program a decision causes a one time jump to a
different part of the program, depending on the
value of an expression.

The if statement

The library function exit()

The exit function causes the program to terminate, no
matter where it is in execution.

Syntax: exit(0)

The if-else

The if statement lets you do something if a condition is true. If it
isn’t true, nothing happens. But suppose we want to do one
thing if a condition is true, and do something else if it’s false.

That’s where the if...else statement comes in.

Example:

If ((a%2)==0)

Printf(”even number”);

else

Printf(”Odd number”);

The if else...

If elseif else statement

This statement is useful when we have many possible scenarios, like assigning grades:

If (mark >= 70)

Grade = ‘A’

Elseif (mark >= 60)

Grade = ‘B’

Elseif (mark >= 50)

Grade = ‘C’

Elseif (mark >= 40)

Grade = ‘D’

Else

Grade = ‘F’

The switch statement

The switch statement provides a way of choosing between a set
of alternatives, based on the value of an expression. The general
form of the switch statement is:

switch (expression) {
case constant1 :
statements;
...
case constantn :
statements;
default:
statements;
}

The switch statement...

For example, suppose we have parsed a binary
arithmetic operation into its three components and
stored these in variables operator, operand1, and
operand2. The following switch statement performs
the operation and stores the result in result.

The break statement

The break statement causes an exit from a loop, just as
it does from a switch statement. The next statement
after the break is executed is the statement
following(after) the loop.

Write a program that asks the user to type 10 integers
and writes the sum of these integers.

